前言:我們精心挑選了數(shù)篇優(yōu)質(zhì)電路原理論文文章,供您閱讀參考。期待這些文章能為您帶來啟發(fā),助您在寫作的道路上更上一層樓。

關(guān)鍵詞:射頻;收發(fā)器;電子標(biāo)簽;RI-R6C-001A
1概述
電子標(biāo)簽是時(shí)下最為先進(jìn)的非接觸感應(yīng)技術(shù)。RI-R6C-001A芯片是美國德州儀器(TI)和荷蘭飛利浦公司(Philips)開發(fā)出的一種廉價(jià)的非接觸感應(yīng)芯片。這種芯片的無源最大讀寫距離可達(dá)1.2米以上。它與條形碼相比,無須直線對準(zhǔn)掃描,而且讀寫速度快,可多目標(biāo)識別和運(yùn)動(dòng)識別,每秒最多可同時(shí)識別50個(gè),頻率為13.56MHz±7kHz(國際通用)的目標(biāo)。它采用國際統(tǒng)一且不重復(fù)的8字節(jié)(64bit)唯一識別內(nèi)碼(Uniqueidentifier,簡稱UID),其中第1~48bit共6字節(jié)為生產(chǎn)廠商的產(chǎn)品編碼,第49~56bit1個(gè)字節(jié)為廠商代碼(ISO/IEC7816-6/AM1),最高字節(jié)固定為“EO”。其使用壽命大于10年或讀寫10萬次,無機(jī)械磨損、機(jī)械故障,可在惡劣環(huán)境下使用,工作溫度為-25~+70℃可反復(fù)讀寫且扇區(qū)可以獨(dú)立一次鎖定,并能根據(jù)用戶需要鎖定重要信息;現(xiàn)有的產(chǎn)品一般采用4字節(jié)扇區(qū),內(nèi)存從512bit~2048bit不等。
RI-R6C-001A芯片采用柔性封裝,它的超薄和多種大小不一的外型,使它可封裝在紙張和塑膠制品(PVC、PET)中,既可應(yīng)用于不同安防場合,也可再層壓制卡。國際標(biāo)準(zhǔn)化組織已把這種非接觸感應(yīng)芯片寫入國際標(biāo)準(zhǔn)ISO15693中。其主要原因是因?yàn)樵撔酒哂蟹庋b任意、內(nèi)存量大、可讀可寫、防沖撞等獨(dú)特的功能。
2引腳排列與功能
圖1所示為(RI-RRC-001A芯片和引腳排列)。
3內(nèi)部結(jié)構(gòu)
收發(fā)器需要5V外加電源,在實(shí)際操作中最小電壓為3V,最大電壓為5.5V,典型電壓為5V。電損耗取決于天線阻抗和輸出網(wǎng)絡(luò)的配置。由于電源紋波和噪聲會(huì)嚴(yán)重影響整個(gè)系統(tǒng)的性能,因此,德州儀器推薦使用標(biāo)準(zhǔn)電源。
射頻收發(fā)器內(nèi)部的輸出晶體管是一個(gè)低阻場效應(yīng)管,電耗直接在TX_OUT腳消耗,推薦用5V電源供電,最好驅(qū)動(dòng)50Ω天線。在輸出端連接一個(gè)簡單的諧振電路或者匹配網(wǎng)絡(luò)可以降低諧波抑制,用選通方波驅(qū)動(dòng)輸出晶體管能達(dá)到100%的調(diào)制度。調(diào)整連接輸出晶體管的電阻(典型電路中的R2)能獲得10%的調(diào)制度,增大這個(gè)電阻,調(diào)制度也隨之增加。通過發(fā)射編碼器變換的數(shù)據(jù)可按照事先選擇好的射頻協(xié)議進(jìn)行傳輸,通信速率應(yīng)為5~120kB,而且至少要有一個(gè)速率滿足已選擇感應(yīng)器協(xié)議的要求。
接收器通過外部電阻連接到天線后可將來自電子標(biāo)簽的調(diào)制信號通過二極管包絡(luò)檢波進(jìn)行解調(diào),接收解碼器輸出到控制器的數(shù)據(jù)是二進(jìn)制數(shù)據(jù)格式,通信速率和射頻協(xié)議由已選擇的模式確定。在輸出數(shù)據(jù)時(shí),接收的數(shù)據(jù)串中已檢測并標(biāo)志了啟動(dòng)、停止、錯(cuò)誤位。
該系統(tǒng)的正常時(shí)鐘頻率為13.56MHz,但是振蕩器的工作頻率范圍為4MHz~16MHz。
在電源被重新啟動(dòng)后,設(shè)備為默認(rèn)配置。RI-R6C-001A系統(tǒng)有三個(gè)有效電源模式。主要模式是滿載模式,而空載模式僅出現(xiàn)在與電路有關(guān)的標(biāo)準(zhǔn)振蕩器和最小系統(tǒng)工作中的標(biāo)準(zhǔn)振蕩器停振時(shí),掉電模式則完全關(guān)斷設(shè)備內(nèi)部的偏置系統(tǒng)。當(dāng)SCLOCK保持高電平時(shí),可在DIN端的輸出脈沖上升沿喚醒電路。
RI-R6C-001A芯片的串行通信接口通常使用三根線,其中的SCLOCK為串行雙向時(shí)鐘;DIN為數(shù)據(jù)輸入,DOUT為數(shù)據(jù)輸出。參見圖2所示的RI-R6C-001A內(nèi)部結(jié)構(gòu)圖。
4典型電路應(yīng)用
圖3所示是RI-R6C-001A的典型應(yīng)用電路,該電路可驅(qū)動(dòng)50Ω的天線,當(dāng)電源電壓為5V時(shí),輸出射頻的功率為200mW,而當(dāng)電源電壓為3V時(shí),輸出射頻功率為80mW。
圖3
由于電路中的發(fā)射器一直工作,因此,應(yīng)增大集成電路散熱片的尺寸以增加散熱面積。設(shè)計(jì)電路時(shí),應(yīng)避免過大的分布電容,當(dāng)電路板分布電容過高時(shí),可配合晶振調(diào)整電容C5的值,以減少時(shí)鐘的不穩(wěn)定性。推薦C5值為22pF。通過軟件處理可使收發(fā)器的調(diào)制度在100%~10%范圍內(nèi)調(diào)整。ISO15693協(xié)議規(guī)定標(biāo)簽允許執(zhí)行10%~30%之間的調(diào)制度(除100%之外),通過改變電阻R2的值可以達(dá)到這個(gè)要求。
關(guān)鍵詞:電鍍流水線行車避撞終端超聲波測距
引言
現(xiàn)代電鍍企業(yè)大量采用自動(dòng)化掛鍍流水線,在這些流水線中大多采用2噸左右的小型行車在各鍍槽中轉(zhuǎn)移掛具架。行車的行走、停止、吊具升降、停留等動(dòng)作完全由PLC控制,可實(shí)現(xiàn)較高精度。行車運(yùn)行質(zhì)量直接關(guān)系到產(chǎn)量和產(chǎn)品質(zhì)量參數(shù)的實(shí)現(xiàn)。在實(shí)際生產(chǎn)中,行車運(yùn)行并不是特別理想。在生產(chǎn)線調(diào)試階段,由于調(diào)試者技術(shù)水平和觀測能力等主客觀限制,行車與實(shí)際生產(chǎn)所需要的走位點(diǎn)之間往往存在微小的誤差。通過長時(shí)間生產(chǎn),這些原始誤差會(huì)逐步積累放大,最終導(dǎo)致行車走位與實(shí)際需要之間出現(xiàn)比較明顯的偏差,從而引起行車間的碰撞,造成掛具架倒掛等事故。一旦發(fā)生倒掛,整條生產(chǎn)線就必須停止,同時(shí)還需要人工處理掉落在渡槽中的鍍件,每次處理時(shí)間至少在20分鐘以上,對正常生產(chǎn)影響極大。為解決碰撞問題,有必要為行車設(shè)計(jì)和安裝一種特殊的避撞終端。
一、避撞原理
行車一般都安裝于特定軌道上并直線運(yùn)行,要實(shí)現(xiàn)避撞,只要能及時(shí)檢測兩部行車之間的距離,在小于安全距離時(shí)暫停運(yùn)行即可。在測距時(shí),通??墒褂盟姆N方法:即無線電測距、激光測距、紅外線測距和超聲波測距。在電鍍流水線上,渡槽通常需要蒸汽加熱,很多原料比如出光劑(硝酸)、除脂劑(LH-303)等會(huì)出現(xiàn)揮發(fā),在渡槽上空形成大量的白色霧氣,所以紅外線測距和激光測距均不適合。同時(shí)在電鍍車間中存在大量的電力設(shè)備,無線電也會(huì)受到很大干擾,因而選擇超聲波測距作為實(shí)現(xiàn)手段。
超聲波測距是一種非接觸式測量方式,主要原理是:發(fā)射器定期發(fā)射超聲波,遇到障礙物產(chǎn)生反射,由接收器接收回波信號,采用單片機(jī)進(jìn)行監(jiān)控,記錄發(fā)射與接收的時(shí)間差Δt,然后可用以下公式得到準(zhǔn)確的液位高度:L1=L-Δt*C/2
其中L是預(yù)先輸入的罐體高度,C是超聲波傳播速度。不過超聲波在空氣中的傳播速度受溫度影響較大,與溫度的關(guān)系大致可用下式來表示:
C=331.45+0.61φ(米/秒)φ為當(dāng)?shù)貧鉁亍?/p>
二、電路設(shè)計(jì)
避撞終端的結(jié)構(gòu)框圖如圖1所示,主要由控制電路(ATmega8)、溫度補(bǔ)償電路、超聲波發(fā)射驅(qū)動(dòng)電路、發(fā)射換能器(T)、超聲波接收檢測電路和接收換能器(R)、輸出接口和電源組成。超聲波的發(fā)射頻率決定采用諧振頻率為40KHz超聲波換能器TCT40-10F1(發(fā)射)和TCT40-10S1(接收),該器件工作距離約10m,盲區(qū)約30cm。
超聲波發(fā)射驅(qū)動(dòng)電路(如圖2所示)采用以74HC04為核心的推挽式驅(qū)動(dòng)電路,單片機(jī)PC3口輸出40KHz的方波一路通過一級反向后加入換能器的一端,另一路通過兩級反向后加入換能器的另一端,這樣可以提高超聲波的發(fā)射功率,繼而增加最大測量距離。
超聲波接收檢測電路采用LM324兩級反相比例放大電路和LM393比較電路組成。放大電路用于接收并放大信號,兩級增益分別控制在40dB和20dB,LM393用于信號整形,整形后的信號將輸入PC2口。
溫度補(bǔ)償電路采用美國Dallas公司的DS18B20芯片,其精度可以達(dá)到0.5℃。數(shù)據(jù)通過PC2口送入單片機(jī)。
三、軟件設(shè)計(jì)
本次設(shè)計(jì)采用模塊化方式,主要包括主程序、發(fā)射子程序、計(jì)算子程序、定時(shí)子程序、溫度測量子程序、比較子程序等7個(gè)單元模塊。
四、結(jié)束語
避撞終端可安裝于行車行走裝置導(dǎo)軌上方前端,測量范圍約為0.3-10m,誤差范圍約±1cm,實(shí)際使用時(shí)控制的安全間距大致在50cm左右。在程序處理時(shí)需要引入數(shù)字濾波技術(shù),根據(jù)多次測量計(jì)算出平均值,以提高測量精度。
在實(shí)際安裝使用過程中,由于電鍍生產(chǎn)環(huán)境較為惡劣,需要特別注意在終端外殼應(yīng)用工程塑料等抗腐蝕材料,以增強(qiáng)對腐蝕性氣體的抵抗能力。
參考文獻(xiàn):
[1]馬潮.AVR單片機(jī)嵌入式系統(tǒng)原理與應(yīng)用實(shí)踐[M].北京:北京航空航天大學(xué)出版社.2007.
關(guān)鍵詞:移動(dòng)通信平臺(tái)雙路電源控制器自動(dòng)脈寬跳變強(qiáng)制PWM模式
引言
專用移動(dòng)通信平臺(tái)(EspecialMobilePlatform),簡稱EMP,是專門為特殊用戶設(shè)計(jì)的,EMP可以使這些用戶充分利用現(xiàn)有的蜂窩移動(dòng)通信網(wǎng)的網(wǎng)絡(luò)資源來傳輸他們的業(yè)務(wù),從而節(jié)省了重新建網(wǎng)的費(fèi)用和時(shí)間。EMP要求體積小,重量輕,功耗小,供電靈活,適應(yīng)車載,具備“動(dòng)中通信”條件,能適應(yīng)部隊(duì)、武警、公安、交通等部門和行業(yè)的使用需求。在EMP中常同時(shí)需要5V,3.3V,15V,以及可調(diào)的多路小功率直流電源以滿足數(shù)據(jù),語音,傳真,短消息,全球定位等業(yè)務(wù)的需要。我們采用MAX1715設(shè)計(jì)了EMP的供電電路很好地滿足了用戶的需求。
1MAX1715的工作模式
MAX1715中的MAXIM專有技術(shù)——快速PWM脈寬控制,是為寬輸入輸出電壓比,負(fù)載快速變化時(shí)保持工作頻率和電感工作點(diǎn)不變而設(shè)計(jì)的??焖貾WM脈寬控制克服了電流模式控制中,固定頻率控制帶來的負(fù)載瞬態(tài)響應(yīng)差的問題,并且克服了傳統(tǒng)的常開通時(shí)間和常關(guān)閉時(shí)間的大范圍變頻PWM控制帶來的問題。MAX1715還提供100ns常開通時(shí)間,從而在負(fù)載響應(yīng)時(shí)保持相對穩(wěn)定的開關(guān)頻率。
如圖1所示,快速PWM脈寬控制是一個(gè)偽固定頻率,具有電壓前饋控制的常開通時(shí)間電流模式控制。它依靠輸出濾波電容的ESR做電流檢測電阻,輸出紋波電壓提供PWM坡度信號??刂扑惴ū容^簡單:上面開關(guān)的開通時(shí)間只是由一個(gè)單穩(wěn)態(tài)電路來決定,該單穩(wěn)態(tài)電路的工作期和輸入電壓成反比,而和輸出電壓成正比。另外一個(gè)單穩(wěn)態(tài)電路設(shè)定最小的關(guān)斷時(shí)間(典型值是400ns)。如果誤差比較器輸出低,開通時(shí)間單穩(wěn)態(tài)電路被觸發(fā)。
MAX1715的PWM控制器具有自動(dòng)的脈寬跳變模式和強(qiáng)制PWM模式兩種工作模式。
1.1自動(dòng)的脈寬跳變模式
對于跳變模式(脈寬跳變控制端SKIP置低,見圖2),輕載時(shí)MAX1715自動(dòng)由PWM控制跳變到PFM控制,這種跳變由一個(gè)比較器來決定,在電感電流過零時(shí),該比較器截?cái)嗔讼露碎_關(guān)的開通時(shí)間。這種控制方式使脈寬跳變到PFM運(yùn)行和脈寬不跳變的PWM運(yùn)行的轉(zhuǎn)折點(diǎn)對應(yīng)于連續(xù)和不連續(xù)的電感電流轉(zhuǎn)折點(diǎn)。這個(gè)轉(zhuǎn)折點(diǎn)和蓄電池電壓的關(guān)系不大,對于7V到24V的蓄電池電壓,這個(gè)轉(zhuǎn)折點(diǎn)基本保持不變。如果使用軟飽和電感,PWM到PFM的轉(zhuǎn)折點(diǎn)電流更小。
因?yàn)檩p載時(shí)脈寬跳變,開關(guān)波形可能出現(xiàn)噪聲和不同步,但是效率高。要在PFM噪聲和效率間達(dá)到平衡就要改變電感值。通常,低電感值(假定線圈電阻保持恒定)在負(fù)載曲線中可以得到更寬的高效范圍;高電感值在重載時(shí)效率高(假設(shè)線圈電阻恒定)并且輸出紋波小。高電感值還意味著體積更大,和降低負(fù)載瞬態(tài)響應(yīng)(尤其是在低輸入電壓時(shí))。
圖1MAX1715的快速寬控制邏輯圖
直流輸出的準(zhǔn)確性由跟蹤誤差的水平來決定,電感電流連續(xù)時(shí)要比不連續(xù)時(shí)對紋波的調(diào)整性要高50%。電感電流不連續(xù)時(shí)如果有斜坡補(bǔ)償,則直流電壓的調(diào)整率還可以提高1.5%。
1.2強(qiáng)制PWM模式
在低噪聲的強(qiáng)制PWM模式時(shí),控制下端開關(guān)開通時(shí)間的過零比較器不工作。這使下端開關(guān)的波形和上端開關(guān)的波形互補(bǔ)。因?yàn)?,PWM環(huán)要保持占空比為VOUT/VIN,所以,輕載時(shí)電感電流反向。強(qiáng)制PWM模式的好處是保持頻率為常數(shù),壞處是空載時(shí)電池電流有10mA到40mA,這由外部MOSFET決定。
強(qiáng)制PWM模式對提高負(fù)載瞬態(tài)響應(yīng),減小音頻噪聲很有好處,還能提高動(dòng)態(tài)輸出電壓調(diào)整時(shí)所需的吸收電流能力,提高多路輸出時(shí)的調(diào)整能力。
2MAX1715的參數(shù)計(jì)算
我們設(shè)計(jì)的移動(dòng)通信平臺(tái)電路參數(shù)如下:
輸入電壓VIN=8~14.5V;
輸出電壓VOUT1=3.3V,VOUT2=5V;
蓄電池5×1.2V=6V,容量為2.8A·h;
紋波系數(shù)LIR=0.35;
負(fù)載電流3A;
開關(guān)頻率第一路345kHz,第二路255kHz;
MOS管IRF7313,導(dǎo)通電阻RDS=0.032Ω,最大導(dǎo)通電阻RDS(MAX)=0.046Ω,VDSS=30V,CRSS=130pF。
在確定開關(guān)頻率和電感工作點(diǎn)(紋波比率)前,先確定輸入電壓范圍和最大負(fù)載電流。尖峰負(fù)載電流會(huì)對元器件的瞬態(tài)應(yīng)力和濾波要求產(chǎn)生影響,并因此決定了輸出電容選擇,電感飽和率和限流電路的設(shè)計(jì)。連續(xù)負(fù)載電流決定了溫度應(yīng)力,并因此決定了輸入電容及MOSFET的選擇和其他要考慮熱效應(yīng)的器件的選擇。一般設(shè)計(jì)連續(xù)負(fù)載電流是尖峰負(fù)載電流的80%。
電感工作點(diǎn)也是效率和體積的折中,最小的最優(yōu)電感使電路工作在導(dǎo)通關(guān)鍵點(diǎn)的邊際(每個(gè)周期在最大負(fù)載電流時(shí),電感電流剛好過零)。MAX1715的脈寬跳變算法在每個(gè)關(guān)鍵導(dǎo)通點(diǎn)啟動(dòng)跳變模式。所以,電感的運(yùn)行點(diǎn)也決定了PFM/PWM模式轉(zhuǎn)換的負(fù)載電流。最優(yōu)的點(diǎn)是20%到50%電感電流間,所以,我們?nèi)IR為0.35。
2.1電感選擇
開關(guān)頻率和電感運(yùn)行點(diǎn)〔紋波(%)即紋波系數(shù)LIR〕決定了電感值,電感的直流電阻要小,以減小電感的損耗。最好選擇鐵心電感,并且磁芯要足夠大,以保證在尖峰電感電流時(shí)不會(huì)飽和。低電感值使電感電流上升較快,在負(fù)載突變時(shí)補(bǔ)充輸出濾波電容上的電荷,瞬態(tài)響應(yīng)快。
第一種輸出的電感為L1(對應(yīng)圖2中的L8),第二路輸出的電感為L2(對應(yīng)圖2中的L9),當(dāng)VIN取10V時(shí)其計(jì)算值如下:
L1=VOUT1(VIN-VOUT1)/VIS×f×LIR×ILOAD(MAX)
=[3.3(10-3.3)]/[10×345×103×0.35(3/0.8)]
=4.88μH
取標(biāo)稱值6.8μH;
L2=VOUT2(VIN-VOUT2)/[VIN×f×LIR×ILOAD(MAX)]=
=7.47μH
取標(biāo)稱值6.8μH。
IPEAK=ILOAD(MAX)+(LIR/2)×ILOAD(MAX)=(3/0.8)+(0.35/2)×(3/0.8)
=4.41A
2.2確定限流
限流的下限電流值等于最小限流門限(范圍由50mV到200mV)除以下端MOSFET的最大通態(tài)電阻,這個(gè)最大通態(tài)電阻是考慮了每℃增加0.5%的值。
限流的方法有兩種:一種是將腳3ILIM接腳
21VCC(見圖2),對應(yīng)的限流門限是默認(rèn)值100mV;
另一種是由限流電路內(nèi)部5μA電流源和ILIM外接
電阻調(diào)限流門限(電阻范圍由100kΩ到400kΩ),
內(nèi)部實(shí)際的限流門限是ILIM端電壓的1/10。則
限流電阻RLIMIT為
RLIMIT=ILOAD(MAX)×RDS(MAX)×10/(5×10-6)
=(3/0.8)×0.046×107/5=345kΩ
取標(biāo)稱值280kΩ。
圖2MAX1715的實(shí)驗(yàn)電路
2.3輸出電容選擇
輸出電容(對應(yīng)圖2中C35及C41)的選擇主要看ESR和耐壓值而不僅僅看電容值。輸出電容必須有足夠小的ESR,以滿足輸出紋波和負(fù)載動(dòng)態(tài)響應(yīng)的需要;同時(shí)又必須有足夠大的ESR以滿足穩(wěn)定性的需要。電容值也要足夠大以滿足滿載到空載轉(zhuǎn)換時(shí)吸收電感儲(chǔ)能的需要,否則,過電壓保護(hù)會(huì)觸發(fā)。
在有CPU的應(yīng)用場合,電容的尺寸取決于需要多大的ESR來防止負(fù)載瞬態(tài)響應(yīng)時(shí)輸出電壓太低。如VDIP是瞬態(tài)輸出電壓,則ESRVDIP/ILOAD(MAX)。
在沒有CPU的應(yīng)用場合,電容的尺寸取決于需要多大的ESR來保持輸出電壓紋波的水平。如Vpp是電壓紋波,則
ESR≤Vp-p/(LIR×ILOAD(MAX))
輸出電容引起的不穩(wěn)定工作體現(xiàn)在兩個(gè)方面:雙跳動(dòng)和反饋電路不穩(wěn)定。雙跳動(dòng)是由于輸出噪聲或ESR電阻太小使輸出電壓信號沒有足夠的坡度。這“欺騙”了誤差放大器在400ns的最小死區(qū)后產(chǎn)生一個(gè)新的周期。電路不穩(wěn)定是指在電源或負(fù)載擾動(dòng)時(shí)產(chǎn)生振蕩,這將觸發(fā)輸出過壓保護(hù)或使輸出電壓降到設(shè)定值以下。穩(wěn)定性由相對開關(guān)頻率的ESR零點(diǎn)決定,電容的零點(diǎn)頻率必須低于開關(guān)頻率f決定的穩(wěn)定點(diǎn)fESR。
fESR=f/π,fESR=1/(2×π×ESR×C)
我們選擇了ESR零點(diǎn)頻率低的鉭電容,其電容值為330μF。
2.4輸入電容選擇
輸入電容(對應(yīng)圖2中C39,C40)主要是要滿足抑制開關(guān)產(chǎn)生的紋波電流(IRMS)的需要。
采用陶瓷電容,鋁電容比較合適,因?yàn)椋鼈兊碾娮枘芤种崎_通時(shí)的浪涌電流。我們選用了10μF的鋁電解電容和10nF的陶瓷電容。
2.5MOSFET選擇
注意最大輸入電壓時(shí)的導(dǎo)通損耗和開關(guān)損耗之和不超過封裝熱限制。選擇下端的MOSFET也應(yīng)盡量具有小的導(dǎo)通電阻,雖然,下端MOSFET在最大輸入電壓時(shí)電阻上的功率損耗最大,但是,在Buck電路中下端的MOSFET是零電壓開關(guān),所以,下端的MOSFET導(dǎo)通損耗不是問題,還可以在下端開關(guān)管上并一個(gè)肖特基二極管,以防止下端開關(guān)管的體二極管在死區(qū)時(shí)間導(dǎo)通。
最壞導(dǎo)通損耗在占空比極限時(shí)產(chǎn)生。上端MOSFET在最小輸入電壓時(shí)的導(dǎo)通損耗最大,在最大輸入電壓時(shí)開關(guān)損耗最大,即
導(dǎo)通損耗PRDS=(VOUT2/VIN(MIN)I2LOAD×RDS
=5/8×32×0.046=0.2588W
開關(guān)損耗PS=VRSS×VIN(MAX)×f×ILOAD=
=(130×10-12×14.5×345×103×3)/1
=0.0283W
3實(shí)驗(yàn)結(jié)果
MAX1715由于沒有電流檢測電阻,并且有快速PWM控制和自動(dòng)的脈寬跳變模式,所以,其效率相對其他應(yīng)用電路更高,我們設(shè)計(jì)的電路實(shí)驗(yàn)效率達(dá)到了97%。電路圖如圖2所示。